Lie algebras and $v_n$-periodic spaces
نویسندگان
چکیده
We consider a homotopy theory obtained from that of pointed spaces by inverting the maps inducing isomorphisms in $v_n$-periodic groups. The case $n=0$ corresponds to rational theory. In analogy with Quillen's results case, we prove this is equivalent Lie algebras $T(n)$-local spectra. also compare it commutative coalgebras spectra, where turns out there only an equivalence up certain convergence issue Goodwillie tower identity.
منابع مشابه
Fiber bundles and Lie algebras of top spaces
In this paper, by using of Frobenius theorem a relation between Lie subalgebras of the Lie algebra of a top space T and Lie subgroups of T(as a Lie group) is determined. As a result we can consider these spaces by their Lie algebras. We show that a top space with the finite number of identity elements is a C^{∞} principal fiber bundle, by this method we can characterize top spaces.
متن کاملLie Algebras, 2-Groups and Cotriangular Spaces
We describe the construction of a Lie algebra from a partial linear space with oriented lines of size 3, generalizing a construction by Kaplansky. We determine all suitable partial linear spaces and the resulting Lie algebras. 1 Lie oriented partial linear spaces A partial linear space is an incidence structure (P,L) with points and lines, such that the point-line incidence graph does not conta...
متن کاملUhlenbeck Spaces via Affine Lie Algebras
Let G be an almost simple simply connected group over C, and let BunaG(P ,P) be the moduli scheme of principal G-bundles on the projective plave P, of second Chern class a, trivialized along a line P ⊂ P. We define the Uhlenbeck compactification U G of BunaG(P , P), which classifies, roughly, pairs (FG,D), where D is a 0-cycle on A 2 = P − P of degree b, and FG is a point of Bun G (P,P), for va...
متن کاملfiber bundles and lie algebras of top spaces
in this paper, by using of frobenius theorem a relation between lie subalgebras of the lie algebra of a top space t and lie subgroups of t(as a lie group) is determined. as a result we can consider these spaces by their lie algebras. we show that a top space with the finite number of identity elements is a c^{∞} principal fiber bundle, by this method we can characterize top spaces.
متن کاملLie $^*$-double derivations on Lie $C^*$-algebras
A unital $C^*$ -- algebra $mathcal A,$ endowed withthe Lie product $[x,y]=xy- yx$ on $mathcal A,$ is called a Lie$C^*$ -- algebra. Let $mathcal A$ be a Lie $C^*$ -- algebra and$g,h:mathcal A to mathcal A$ be $Bbb C$ -- linear mappings. A$Bbb C$ -- linear mapping $f:mathcal A to mathcal A$ is calleda Lie $(g,h)$ -- double derivation if$f([a,b])=[f(a),b]+[a,f(b)]+[g(a),h(b)]+[h(a),g(b)]$ for all ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Annals of Mathematics
سال: 2021
ISSN: ['1939-8980', '0003-486X']
DOI: https://doi.org/10.4007/annals.2021.193.1.3